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The piezoelectric modifications of the tensors of elastic, optical and photoelastic constants and their 
consequences on spontaneous and stimulated Brillouin scattering are discussed. 

1. Basic equations 

Starting with the expansion of the thermodynamic 
potential f(Uz,,,,Ez) of a lossless medium with respect 
to the strain Uz~ and the electric field Et, 

f ( U,m, Et) = f o - o~, Et -½utk Et Ek 
- ½ , , k ,  E t E k  E ,  - . . . 't- ½ fllklm Utk Ulm 
+ yumE~Ulm , q-~i tamEtEk Ulm , (1) 

we obtain the equations of state we need for the 
macroscopic description of the Brillouin scattering 
process 

of 
P t  ~--- ~ - -  0Et 

= =t + ~tkEk + ~tktE~El 

--~llmftm--~tklmEkUlm (2) 

(3) O f  -- fliktn, Ulm -t- ~stkEs-t- ½~tmikEtEm S t k -  OUt,, 

Since we are dealing with high-frequency processes, 
namely ultrasonic and optical waves, in (2) and (3) the 
partial derivatives should be taken at constant entropy. 
That is the coefficients in (2) and (3) represent adiabatic 
constants. The optical constants ~k and etk = ark + eofitk, 
the elastic constants flt,,,,, the piezoelectric constants 
)'tkt, the electrooptical constants atkz and the photo- 
elastic constants Yikt,n give the connexions between the 
electric field Et. the strain U~m and the electric polar- 
ization Pt as well as the stress S~k. 

The linear piezoelectric coupling of the elastic and 
electric fields is given by the tensor of the piezoelectric 
constants Ys,,. Because of its index symmetry ys,k= 

7ski there are only 18 linearly independent components. 
This number is further reduced by the symmetry of 
the crystallographic class. For instance C6v (6ram) 
(e.g. ZnO, CdS, ZnS, CdSe, CdTe, ZnTe) has three 
independent piezoelectric constants, Car (3m) (e.g. 
LiNbO3) four constants, Ta ~3m) (e.g. ZnS, GaAs, 
InSb, GaP, InAs, ZnSe) only one independent com- 
ponent. For media with inversion symmetry piezo- 
electricity does not exist. 

We have to substitute the equations of state (2,3) 
into the field equations of Maxwell's and Newton's 
continuum theory 

[ 
, I 

Pt 

(4) 
82 0 

e ~ u,= - ~  sty. (5) 

2. Mixed acoustoelectromagnetic waves 

At first we will consider only the linear terms and 
assuming plane waves with wave vectors k = kn, K = KN 
and unit vectors n,N of the wave normals 

JEt = Et exp [ i (kx-  egt)] (6) 

Ut = Ut exp [ i (Kx-  f2t)], (7) 

we get the equations (k=K,  co=t2): 

(_O 2 
_ _  r e l  • 2 _ _  (kikk- k2~ik q- C~ eik )Ek -- lflofD ~ikl Ugkl - 0 (8)  

(e~'~2c~il--~iklmkmkk)Ui "~ i~)sikEskk=O . (9) 

A C 31A - 7 
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If there is no piezoelectricity, we obtain the familiar 
two electromagnetic (eigen-)waves (A = 1,2) propagat- 
ing with the two velocities of light C(A) according to 
the dispersion relation o)=co(A)(k)=kc(A)(n) and the 
three acoustic (eigen-)waves ( J =  1, 2, 3) travelling with 
the three phase velocities of sound v(j) according to 
the dispersion relations £2 = ~Q(j)(K)= Kv(j)(N). 

In the piezoelectric case each acoustic wave is ac- 
companied by an electric wave and vice versa, so that 
there exist five mixed acoustoelectr(omagnet)ic (eigen-) 
waves ( Z =  1,2, 3,4, 5), i.e. we have pentrefrigence 
(Kyame, 1949). Their polarizations and dispersion 
relations co=oo(z)(k)=kV(z)(n) can be deduced from 
the linear system (8,9). The phase velocities V(z~(n) are 
modified by the piezoelectric coupling, if the corre- 
sponding pure electric and acoustic modes are piezo- 
active, i.e. if y~,,E~kk ~ 0 and Y,k, Ukk~ ~ 0 respectively. 

As the piezoelectric coupling is relatively weak 
these five waves will split into two waves propagating 
with phase velocities V(z) = O(A) of the order of magni- 
tude of the velocity of light (fast modes, mixed waves 
of electromagnetic type) and into three waves with 
phase velocities V(z)= g(j) of the order of magnitude 
of the velocity of sound (slow modes, mixed waves of 
acoustic type). 

Elimination of the elastic displacement U, in (8) and 
(9) for an electromagnetic-type mode results in the 
familiar Maxwell wave equation 

(,0 2 
_ _  - g r e l $  g '  = 0 (10) ( k i k k -  k2J~k + c~) "" J'-'k 

with the effective dielectric constants r~r.l 

1 
? . ( n ) = e . -  ~ 7,.zn.yt~ln~ (11) 

f f c  

determining the polarizations and velocities O(A)(n) of 
electromagnetic waves in piezoelectric media. 

Eliminating the electric field of an acoustic-type 
mode we find in the same way an equation of elastic 
motion 

(Q~228u- fl,k,,,Kk Kin) Ut = 0 (12) 

with effective elastic constants fi, which are maximally 
altered by piezoelectricity, if the acoustic field produces 
a longitudinal electric field, 

~sikNsYrlmNr 
fl'kZm=fl'k'm+ evwNvNw ' (13) 

and which determine the polarizations and velocities 
zT(s)fN) of acoustic waves in piezoelectric media. 

3. Briliouin scattering in piezoelectric media 

The typical macroscopic interactions of the spon- 
taneous and stimulated Brillouin scattering processes 
are given by the bilinear and quadratic terms in (2) and 
(3) containing the photoelastic constants. As we have 
to treat the acoustic and the associated (longitudinal) 
electric field in a piezoelectric crystal on the same 

level we add in the electric polarization the non- 
linear term with the electrooptical constants. Ac- 
cordingly we insert the equations of state (2,3) into 
the field equations (4,5). 

The Brillouin scattering problem is characterized by 
three interacting waves which we assume to be plane 
and stationary. These are the mixed exciting wave of 
electromagnetic type [o3 = O)(A)(k) = k((A)(n)] 

E~, U,~exp [ i (kx-  o)t)], (14) 

the mixed wave of acoustic type [f2 = £2(j)(K)= K,?tj)(N) ] 

g~, E, .-. exp [i(Kx-.Qt)] (15) 

causing the scattering of the exciting wave and finally 
the mixed scattered wave of electromagnetic type 
[co' = ( o ( ~ , , ( k ' )  = k ' e ( A , ~ ( n ' ) ]  

E~, U~--,exp [ i (k 'x -  of t)] .  (16) 

Arranging the field equations with regard to the 
phase-match relations 

o)' = o) +.Q, k ' = k + K ,  (17) 

we get three pairs of equations for the mixed exciting, 
scattering and scattered waves. If we finally eliminate 
the less interesting acoustic displacement in the field 
equations for the mixed electromagnetic-type waves 
to obtain the electric field and analogously eliminate 
the electric field of the acoustic-type modes to obtain 
the acoustic displacement, we have the well known 
(Fourier-transformed) equations 

( - - r e l  ..... l~o03 7,.t,,K,,E,.U , k i k k - k 2 3 i ,  + c2 e,k Ek= -- " 2- , ~ .  

(18) 
( o)" ) 

--rel E£--" ,2- ~ - - - -  l,l.lO(-D 7ir tuKuErUt  (19) k lk~ , -k '26 ik+ c2 e., 

(Oy22fi,,_~,kt,,,XkK,,,)~l, = _2TljitEll: , E j K t  , ( 2 0 )  

which describe the (anti-Stokes component of the) 
Brillouin scattering process (Macheleidt, 1972). 

The optical, elastic and photoelastic constants are 
modified by the piezoelectric coupling: 

1 
eik= eik ~0C.. ~ 7,~ln,Yh~ln, (21) 

fl-u,,m=flu,,,,, + 7,ikN, yr,mNr 
evwN,,Nw (22) 

- o~m,,yot,,N,,N., 
7i~,, = 7,rt,,- e,,wNoNw (23) 

= 2oh.,,y.ruNoNm (24) 
Yi,,, = Ym,, - evwN~.Nw 

Formula (23) was also obtained by Nelson & Lax 
(1971) starting with a classical microscopic theory of 
nonlinear electrodynamics in elastic anisotropic di- 
electrics. In this paper Nelson & Lax give a detailed 
discussion of photoelastic interaction and an extensive 
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list of references. Besides classical papers (e.g. Pockels, 
1889a, b, 1890) their bibliography contains works 
dealing with the influence of piezoelectricity on photo- 
elasticity (e.g. Brody & Cummins, 1969; Chapelle & 
Taurel, 1955; Coquin, 1970; Wemple & Di Domenico, 
1970). Compared with the nonpiezoelectric case the 
effective constants (21,22,23,24) exhibit changed mag- 
nitudes, additional direction dispersion and an in- 
creased number of independent components. 

For representative materials the relative change in 
these constants can be estimated to be of the order of 
magnitude of 10 -ix for the optical, 10 -2 for the 
elastic and 10 -2 for the photoelastic constants. 

In addition to the (e.g. electronic) frequency dis- 
persion of the pure constants, eik,~iklm,~irkl , which we 
are starting with as given quantities, the coupling 
terms introduce the frequency dependence determined 
by the dispersion of ~'~kZ, 0C~kZ and elk respectively. In 
our case, however, this extra dispersion is negligibly 
small. 

As the piezoelectric coupling cannot be switched 
off, experimentally we measure the components of the 
tensors ~,fl, y and ~, and not those of e, fl,~. But from 
considerations of the symmetry of the crystal we 
know at least the point-group structure of the pure 
tensors, e ik , f l t k lm  , ~)iklra, which is tabulated in textbooks 
on crystal physics (e,g. Ludwig, 1970) and which in 
general does not coincide with that of the effective 
tensors,-~,fl, y,~. For that reason we cannot immedia- 
tely start with (the symmetry of) the pure constants 
eik,~iklm,~iklm to calculate the Brillouin scattering in 
piezoelectric crystals, but we have first to compute the 
effective constants (21,22,23,24). The number of in- 
dependent components of the effective material ten- 
sors is greater than that of the pure material tensors. 
Therefore, within the above given order of magnitude, 
the anisotropy of the corresponding processes (prop- 
agation of light and sound, scattering of light, gen- 
eration of sound) is increased in piezoelectric media 
compared with a medium of the same crystallographic 
class, but without consideration of piezoelectricity. 

The effective linear Optical and elastic constants 
determine through the familiar electric and acoustic 
wave equations (10,12) the polarizations and disper- 
sion relations of the light and sound waves partici- 
pating in the Brillouin scattering process. Now it is 
these piezoelectrically modified phase-velocities which 
we have to insert into the Brillouin frequency shift 
formula (Macheleidt, 1972). 

(.0~ - -  (_D 
- - ~cJ)(N) 

O9 

] /  4 sin2 ( 0 / 2 ) (  1 2 

x t?~a)(n)?tA,~(n') -- ?ta)(n) 
1 e~.,~(n')) 

(25) 

N ......................... t?~A)(n)n'- c~a,)(n')n . (27) 
-2 -2 l/c~a,) + c~,4) - 2e~,~,)~,4) cos 0 

Because of the relatively large piezoelectrically induced 
increase in the magnitude (piezoelectric stiffening) and 
anisotropy of the sound velocity entering into formula 
(25), by precise measurements of the Brillouin fre- 
quency shift in the dependence of the scattering 
geometry (e.g. the scattering angle 0) and of the po- 
larizations, not only the pure elastic but also (certain) 
piezoelectric constants can be determined, (Cecchi et 
aL, 1970; O'Brien et al., 1969). 

Moreover the intensities of the non-linearly gener- 
ated waves essentially depend on the tensor of the 
effective photoelastic constants. Thus the piezoelec- 
tric coupling is of consequence to the intensity of the 
scattered light. A glance at (19) shows that in principle 
it is possible to find out not only the pure photoelastic 
but also (certain) electrooptical constants by suffici- 
ently exact (relative) intensity measurements. 

It is very remarkable that the piezoelectrically varied 
photoelastic constants 7~k~,, describing the scattering 
of light by sound differ from those photoelastic 
constants ~kZm determining the generation of acoustic 
waves by nonlinear interaction of two electromagnetic 
waves. 

Since the linear constants e~k,/~kz,, and the product 
of Y~kZ,,, and ~k,m enter into the relation defining the 
threshold of the stimulated Brillouin scattering this 
threshold will be modified with respect to its value and 
especially to its anisotropy by the piezoelectric coup- 
ling. 
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